Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36679340

RESUMEN

This study assessed the efficacy of five denture cleansers on the microbial adherence and surface topography of conventional and CAD/CAM denture base resins. Acrylic resin discs were fabricated using conventional, milling, and 3D printing methods (N = 180). The discs were contaminated with dual species of Candida albicans and Streptococcus mutans biofilm for 72 h and then disinfected with either of the denture cleansers (Fittydent cleansing tablets, 2% Chlorhexidine gluconate, 0.2% Chlorhexidine gluconate, 0.5% sodium hypochlorite, and 1% sodium hypochlorite (n = 10). Distilled water served as the control group. The colony-forming units of the microorganisms were calculated, followed by post-treatment surface roughness. Data were statistically analyzed using one-way ANOVA, paired t-test, and post hoc Tukey HSD test (α = 0.05). Among the denture cleansers, 2% Chlorhexidine gluconate, 0.5% sodium hypochlorite, and 1% sodium hypochlorite had the best cleansing effect on the resin discs and demonstrated zero growth of colonies for both the species. Comparing the material groups, the 3D-processed discs showed higher colony-forming units followed by the conventional and CAD/CAM milled group. The highest surface roughness was demonstrated by the 3D-printed discs (0.690 ± 0.08 µm), followed by the conventional (0.493 ± 0.11 µm) and the milled groups (0.301 ± 0.08 µm). The tested chemical denture cleansers affected the Candida albicans and Streptococcus mutans adhesion compared to control discs immersed in distilled water. The clinician may recommend to their patient to use 2% chlorhexidine gluconate for the disinfection of CAD/CAM PMMA denture base materials.

2.
J Adv Prosthodont ; 13(3): 160-171, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34234926

RESUMEN

PURPOSE: This in-vitro study evaluated and compared the color stability of 3D-printed and conventional heat-polymerized acrylic resins following aging, mechanical brushing, and immersion in staining medium. MATERIALS AND METHODS: Forty disc-shaped specimens (10 mm in diameter and 3 mm thick) were prepared from two 3D-printed [DentaBASE (DB) and Denture 3D+ (D3D)] and one conventional polymethylmethacrylate (PMMA) denture materials. The specimens were thermo-cycled, subjected to mechanical brushing, and were immersed in either coffee, lemon juice, coke, or artificial saliva (AS) to simulate one and two years of oral use. Color measurements of the specimens were recorded by a spectrophotometer at baseline (T0), and after one (T1) and two years (T2) of simulation. The color changes (∆E) were determined and also quantified according to the National Bureau of Standards (NBS) units. Descriptive statistics, followed by factorial ANOVA and Bonferroni post-hoc test (α=.05), were applied for data analysis. RESULTS: The independent factors, namely material, staining medium, and immersion time, and interaction among these factors significantly influenced ∆E (P<.009). Irrespective of the materials, treatments, and time, the highest and the lowest mean ∆Es were observed for PMMA in lemon juice (4.58 ± 1.30) and DB in AS (0.41 ± 0.18), respectively. Regarding the material type, PMMA demonstrated the highest mean ∆E (2.31 ± 1.37), followed by D3D (1.67 ± 0.66), and DB (0.85 ± 0.52), and the difference in ∆E between the materials were statistically significant (P<.001). All the specimens demonstrated a decreased color changes at T2 compared to T1, and this difference in mean ∆E was statistically significant (P<.001). CONCLUSION: The color changes of 3D-printed denture resins were low compared to conventional heat polymerized PMMA. All the tested materials, irrespective of the staining medium used, demonstrated a significant decrease in ∆E values over time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...